Eighth-order phase-field-crystal model for two-dimensional crystallization.

نویسندگان

  • A Jaatinen
  • T Ala-Nissila
چکیده

We present a derivation of the recently proposed eighth-order phase-field crystal model [A. Jaatinen, Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal models. We find that among the phase-field crystal models studied, the eighth-order fitting scheme gives results in good agreement with the density functional theory for both static and dynamic properties, suggesting it is an accurate and computationally efficient approximation to the density functional theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model.

In materials science the phase-field crystal approach has become popular to model crystallization processes. Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase-f...

متن کامل

A Phase Field Technique for Modeling and Predicting Flow Induced Crystallization Morphology of Semi-Crystalline Polymers

Abstract: Flow induced crystallization of semi-crystalline polymers is an important issue in polymer science and engineering because the changes in morphology strongly affect the properties of polymer materials. In this study, a phase field technique considering polymer characteristics was established for modeling and predicting the resulting morphologies. The considered crystallization process...

متن کامل

Effect of thermal transport on spatiotemporal emergence of lamellar branching morphology during polymer spherulitic growth.

Spatiotemporal emergence of lamellar branching morphology of polymer spherulite has been investigated theoretically in the framework of a phase field model by coupling a crystal solidification potential pertaining to a nonconserved crystal order parameter with a temperature field generated by latent heat of crystallization. A local free-energy density having an asymmetric double well has been u...

متن کامل

Phase-field modeling on morphological landscape of isotactic polystyrene single crystals.

Spatio-temporal growth of isotactic polystyrene single crystals during isothermal crystallization has been investigated theoretically based on the phase field model by solving temporal evolution of a nonconserved phase order parameter coupled with a heat conduction equation. In the description of the total free energy, an asymmetric double-well local free energy density has been adopted to repr...

متن کامل

Simulation of Polymer Crystal Growth with Various Morphologies Using a Phase-field Model

A finite element-based phase-field model was developed to simulate crystal growth in semi-crystalline polymers with various crystal morphologies. The original Kobayashi’s phase-field model for solidification of pure materials was adopted to account for polymer crystallization. Evolution of a nonconserved phase-field variable was considered to track the interface between the melt and the crystal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010